

1

COURSE DESCRIPTION CARD - SYLLABUS

Course name

System and concurrent programming

Course

Field of study

Computing

Area of study (specialization)
-

Level of study
First-cycle studies
Form of study

full-time

Year/Semester

2/3

Profile of study

general academic

Course offered in
Polish

Requirements

compulsory

 Number of hours

Lecture

30

Tutorials

0

Laboratory classes

30

Projects/seminars

0

Other (e.g. online)

0

Number of credit points

5

Lecturers

Responsible for the course/lecturer:

Prof. dr hab. inż. J. Brzeziński

email: Jerzy.Brzezinski@cs.put.poznan.pl

tel. tel. (0-61) 665-2903, fax: (0-61) 877 1525,

Instytut Informatyki

ul. Piotrowo 2, 60-965 Poznań

Responsible for the course/lecturer:

dr hab. inż. Anna Kobusińska

email: Anna.Kobusinska@cs.put.poznan.pl

tel. tel. (0-61) 665-2964, fax: (0-61) 877 1525,

Instytut Informatyki

ul. Piotrowo 2, 60-965 Poznań

 Prerequisites

Students starting this course should have basic knowledge of the functioning of operating systems

presented in the Operating Systems course. They should also have the following skills: programming,

defining low-level data structures and solving basic problems of low-level coding of algorithms acquired

in the course of Low-level programming. Students should also have the ability to obtain information

from the indicated sources, as well as understand the need to expand their competences and be ready

to cooperate as part of the team.

Course objective

The objective for this course is to give the students knowledge in the field of concurrent programming,

process management, synchronization mechanisms and deadlock prevention. Moreover, during the

2

course the synchronization mechanisms that are used to solve classical synchronization problems are

disscussed.

Course-related learning outcomes

Knowledge

 1. Students posesses well-grounded knowledge on key issues in the field of system and concurrent

programming, and the detailed knowledge in the field of operating systems

2. Students have basic knowledge of the life cycle of operating systems, in particular about the

principles of process management, synchronization mechanisms and deadlock detection

3. knows the basic techniques, methods and tools used in the process of solving IT engineering tasks in

the field of system and concurrent programming

Skills

1. Students are able to formulate and solve IT tasks, use appropriately selected methods of system and

concurrent programming, including analytical methods

2. Students are able to assess the computational complexity of concurrent algorithms

3. Students can - in accordance with the given specification - design (formulate the functional

specification and non-functional requirements for selected quality characteristics) and implement a

broadly understood IT systems, selecting a programming language appropriate for a given programming

task and using appropriate methods, techniques and tools of concurrent programming

4. Students have the ability to formulate concurrent algorithms and implement them

Social competences

1. Students understand the importance of using the latest knowledge from the field of computer science

in solving research and practice problems

2. Students are aware of the importance of knowledge in the field of system and concurrent

programming in solving engineering problems and know examples of malfunctioning IT systems that

have led to serious financial and social losses

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

The knowledge acquired during lectures is verified during a problem-based written exam that consists of

open and/or test questions. The maximum number of points per open question is 10, and per test

question is 1. To pass the exam students must obtain at least 50% of the total points.

The skills acquired during the exercises are verified in the following way:

- assessment of the students' preparation for classes ("entrance" test),

- continuous assessment during each class (oral answers),

3

- assessment of knowledge and skills obtained during the project that is implemented as a homework

It is possible to get additional points for activity during classes, especially during discussing additional

aspects of the considered problems. Passing score: 50% of total points.

Programme content

Lectures cover the following topics:

1.Elements of concurrent programming (process flow graphs, and notations "and", "fork-join-quit",

"parbegin-parend")

2) Petri nets graphs and the application of Petri nets in modeling of concurrent processes

3) The problem of mutual exclusion and exemplary software methods of solving it, including, among

others, the algorithms: Dekker, Dijkstra, Peterson for two and n processes, Lamport

4) The synchronization mechanisms: hardware (test-and-set instructions, active wait, blocking the

interrupt system), system (binary and general semaphores, lock and unlock operations, enq and deq

operations, wait and post operations, block and wakeup operations) , event counters), software (critical

regions, conditional critical regions, monitors, software implementations of synchronization

mechanisms) and communication (synchronous and asynchronous send and receive messages

exchange).

5) The application of selected synchronization mechanisms to solve classical problems of

synchronization (mutual exclusion, producer-consumer problem, reader-writer problem, problem of five

philosophers)

6) Process management: the concept of a process, process state graph, the problem of scheduling tasks

in probabilistic and deterministic terms (ranking evaluation criteria), scheduling algorithms.

7) The definition of a deadlock, necessary and sufficient conditions for deadlocks, deadlock prevention

(prevention, avoidance, detection and elimination approach).

During the laboratory classes, students implement the mechanisms offered by the UNIX kernel, and use

the information obtained during the lectures to implement algorithms and synchronization mechanisms.

The following topics are discussed in the laboratories:

1) File operations

2) Process handling: creating and deleting processes, running programs, redirecting standard streams:

input, output and diagnostic output

3) Creation and handling of named and unnamed pipes, examples of errors in synchronization of

processes using pipes

4

4) IPC mechanisms: access to shared memory, support for semaphores and message queues. Use of

known mechanisms for process synchronization; implementation of algorithms learned during the

lectures with the use of selected IPC mechanisms

5) Thread handling and management

Teaching methods

1. Lectures: multimedia presentation, illustrated with examples given on the blackboard.

2. Laboratory classes: a multimedia presentation illustrated with examples and practical excersises,

project.

Bibliography

Basic

1. Operating Systems: Design and Implem., Tanenbaum A., Prentice-Hall Intern. Ed., 2008

2. Podstawy systemów operacyjnych, Silberschatz A., Galvin P.B., WNT, 2006

3. Operating System Concepts, 8th, Update Edition, Abraham Silberschatz, Peter B. Galvin, Greg Gagne,

Wiley&Sons, 2011

4. Program. w systemie Unix dla zaawansowanych, Marc J. Rochkind, WNT, 2008

5. System operacyjny LINUX, Cezary Sobaniec, Nakom, 2002

6. Unix i Linux. Przewodnik administratora systemów. Wydanie IV, E. Nemeth, i inni, WNT, 2011

Additional

1. Operating Systems - A Modern Perspective, 3rd Edition , Nutt, G.J, Addison-Wesley Pub, 2003

2. Operating Systems, 3/E, Deitel I inni, Prentice Hall Intern, 2004

3. The Linux Programming Interface, Michael Kerrisk, No Starch Press, 2010

4. Advanced Programming in the Unix Environment (3rd Edition), R.Stevens, S.Rago, O'Reilly, 2013

5. Linux System Programming: Talking Directly to the Kernel and C Library, R. Love, O'Reilly, 2007

6. Linux Kernel Development, R. Love, Addison-Wesley, 2010

7. Operating Systems: Internals and Design Principles (8th Edition), Stallings W., Prentice Hall Intern,

2018

5

Breakdown of average student's workload

 Hours ECTS

Total workload 120 5,0

Classes requiring direct contact with the teacher 64 3,0

Student's own work (literature studies, preparation for
laboratory classes/tutorials, preparation for tests/exam, project
preparation) 1

56 2,0

1
 delete or add other activities as appropriate

